Так ли уникален импульсный ультрафиолет? (спойлер: нет)

Так ли уникален импульсный ультрафиолет? (спойлер: нет)

В Яндекс.Дзене появилась статья эксперта в области УФ-обеззараживания Андрея Ткачева про импульсные ультрафиолетовые установки и в целом про метод обеззараживания воздуха и поверхности помещений такими УФ-установками.

Приведем некоторые из опубликованных выводов:

«Таким образом, получается, что импульсная УФ-установка за счет ультрафиолета бактерицидного диапазона, излучаемого импульсной ксеноновой лампой, обеспечивает УФ-дозы, необходимые для обеззараживания по классическому механизму разрушения ДНК, применяемому для ртутных и амальгамных бактерицидных ламп. Другими словами, импульсные ксеноновые установки обеззараживают помещения точно таким же ультрафиолетом, как и классические бактерицидные облучатели, использующие ртутные и амальгамные УФ-лампы, обеспечивая соблюдение тех же требуемых УФ-доз на длине волны 254 нм. И никаких сверхнизких эффективных доз.»

«В случае слабого перемешивания воздуха в помещении концентрация озона около импульсной установки может многократно превышать ПДК и представлять большую опасность для людей»

«… установки, использующие импульсное УФ-обеззараживание, в разы дороже установок, использующих ртутные или амальгамные УФ-лампы.»

Публикуем полный текст статьи с разрешения автора.

Уже много лет в информационной среде, касающейся обеззараживания воздуха и поверхности, периодически появляются сообщения о крайне эффективном, даже уникальном методе УФ-обеззараживания; речь идёт о применении импульсных ксеноновых источников ультрафиолета. Попробую разобраться так ли это, такой ли это уникальный метод.

Сейчас фактически только две компании в мире производят оборудование для обеззараживания с использованием импульсного ультрафиолета – это российская ООО «Научно-производственное предприятие «Мелитта» (далее «Мелитта») и американская компания Xenex Disinfection Services Inc. (далее Xenex), которой «Мелитта» в 2011 году предоставила лицензию на производство и продажу оборудования.

За последние 2 года по понятным причинам системы обеззараживания воздуха и поверхности переживают беспрецедентный бум. Но даже на этой волне все новые производители бактерицидных облучателей, появляющиеся на рынке, оперируют классическими ртутными бактерицидными лампами или с их современными амальгамными аналогами или же пробуют работать с УФ-светодиодами.

И дело здесь не в том, что зарубежный мир не знаком с импульсной технологией. Ведь обеззараживать импульсным ультрафиолетом придумали не в России: первые исследования были выполнены ещё в конце 70-х годов в Японии, но широкую известность методу принесли публикации 2000-2001 годов, в которых доктор Alex Wekhof из Германии опубликовал, что механизм обеззараживания импульсным ультрафиолетом обусловлен двумя различными составляющими:

1. Классическое обеззараживание ультрафиолетом С-диапазона (200-280 нм);

2. Разрыв клеток микроорганизмов вследствие перегрева, вызванного всеми фотонами ультрафиолета (более поздние работы покажут, что здесь больше работает УФ диапазонов A и B (280-400 нм).

И вот этот второй фактор это и есть действительно уникальная составляющая облучения импульсным ультрафиолетом. Но нюанс в том, что, согласно тем же исследованиям, эффект перегрева возникает только при высоких облученностях (свыше 1-5 кВт/см²). Да, импульсные ксеноновые лампы могут обеспечивать высокую облученность, но, как известно, с увеличением расстояния от источника света мощность света значительно снижается (если быть совсем точным, то снижается обратно пропорционально квадрату расстояния). Из-за этого термический эффект разрушения клеток наблюдается только в непосредственной близости от лампы, в пределах десятка сантиметров. И это можно подтвердить расчетами.

Расчет мощности для эффекта перегрева

Если рассмотреть, к примеру, установку Yanex-2 производства «Мелитты», то известны ее технические параметры (они опубликованы вот в этом исследовании): электрическая мощность лампы 1 кВт, частота вспышек (импульсов) 2,5 Гц, длительность вспышек на полувысоте 120 мкс. Средний бактерицидный поток в диапазоне 200-300 нм составляет 42 Вт.

Энергия в одном импульсе равна: 42 Дж / 2,5 = 16,8 Дж.

Для расчета пиковой мощности надо энергию разделить на время:

 

Для того, чтобы рассчитать облученность на расстоянии, например, 1 см, надо пиковую мощность разделить на площадь поверхности цилиндра высотой 20 см (это высота лампы) и с радиусом основания 1 см. Получаемая облученность:

 

Получается, что уже на 2 см от такой лампы эффект перегрева наблюдаться не будет.

Получается, что в реальных применениях при облучении комнат, операционных и других помещений этот фактор принципиально не будет работать, так как там расстояния от лампы до обрабатываемой поверхности исчисляются в метрах, а не в сантиметрах. Можно ли тогда причислять этот фактор к уникальным потребительским свойствам? На мой взгляд, нет.

Теперь предлагаю вернуться и поговорить о первом факторе в обеззараживании импульсным УФ – обеззараживании ультрафиолетом диапазона УФ-С (200-280 нм). Его механизм изучен ещё тщательнее, существуют методики расчёта уровня облучения и УФ-доз, как определены и сами величины эффективных УФ-доз для различных микроорганизмов. Поэтому я предлагаю численно оценить УФ-дозу от импульсной УФ-установки.

Расчет УФ-дозы импульсной УФ-установки

Рассмотрим установку Yanex-2 производства «Мелитта». Согласно техническим данным, указанным в уже упоминавшемся исследовании, импульсная ксеноновая лампа установки имеет электрическую мощность 1000 Вт и ее бактерицидный поток (в диапазоне 200-300 нм) составляет 42 Вт. Получается, что лампа имеет очень маленький КПД преобразования потребляемой электроэнергии в бактерицидное излучение, всего 4,2%. Но пусть так, для расчета УФ-дозы КПД неважно.

Облучение в большинстве экспериментов проводилось на расстоянии 2 м. Таким образом, вся бактерицидная энергия лампы (а это 42 Вт) распределяется по поверхности сферы радиусом 2 м. А это означает, что можно рассчитать интенсивность облучения, то есть количество бактерицидной энергии, попадающей на 1 см² этой поверхности. Для этого следует разделить бактерицидную мощность излучения на площадь поверхности сферы:

 

В самой работе авторы указывают УФ-интенсивность равной 1 Вт/см², что немного больше рассчитанного значения 0,84 Вт/см².

Теперь, чтобы рассчитать УФ-дозу надо интенсивность умножить на время облучения. В эксперименте оно составляло минимум 5 минут. Получаем УФ-дозу:

 

В результате расчетов получилось, что импульсная установка в одном из основных режимов работы, который использовался в экспериментах в попытках показать «гораздо меньшие УФ-дозы, нежели у традиционных УФ-ламп», облучала тестовую поверхность с дозой более 250 Дж/м². А это весьма значительная величина. Если посмотреть, например, в российское руководство Р 3.5.1904-04, то там указано, что для обеззараживания на 99,9% по Staphylococcus aureus требуется доза 66 Дж/м², по Pseudomonas Aeruginosa – 105 Дж/м². В иностранных источниках, таких как статья в журнале UV Solutions, указаны УФ-дозы и для других микроорганизмов, например, для VRE требуется доза 150 Дж/м² для обеззараживания на 99,999%.

Таким образом, получается, что импульсная УФ-установка за счет ультрафиолета бактерицидного диапазона, излучаемого импульсной ксеноновой лампой, обеспечивает УФ-дозы, необходимые для обеззараживания по классическому механизму разрушения ДНК, применяемому для ртутных и амальгамных бактерицидных ламп.

Другими словами, импульсные ксеноновые установки обеззараживают помещения точно таким же ультрафиолетом, как и классические бактерицидные облучатели, использующие ртутные и амальгамные УФ-лампы, обеспечивая соблюдение тех же требуемых УФ-доз на длине волны 254 нм. И никаких сверхнизких эффективных доз. Опять никакой уникальности!

Схожие выводы можно обнаружить в многочисленных исследовательских публикациях. Masahiro Otaki с коллегами в выводах своей работы пишут, что нет значительного различия между эффективностью обеззараживания колифагов и E.coli при использовании УФ-ламп низкого давления или импульсных ксеноновых ламп. Wang и его коллеги в результате работы, опубликованной в 2005 году, пришли к таким же выводам.

Существуют и мета-анализы публикаций, касающихся применению импульсного УФ. Например, это работа, выполненная группой ученых под руководством Vicente Gomez-Lopez в 2007 году. Они делают вывод, что фототермический эффект от импульсных ламп работает только в определенных экстремальных условиях, и это единственное принципиальное отличие импульсного УФ от классического.

Но это всё были экспериментальные, фундаментальные исследования. А есть ли практические сравнения работы двух разных приборов? Да, конечно, и такие работы проводились неоднократно. Например, это уже ставшая классической в США работа Michelle Nerandzic и коллег. Они сравнивали работу аппарата Xenex, работающего на импульсной ксеноновой лампе, и аппарата Tru-D c обычными ртутными УФ-лампами. Привожу один график из этой работы:

Эффективность импульсного ксенонового ультрафиолета (Pulsed Xenon) и ультрафиолета С-диапазона (UV-C) в отношении различных микроорганизмов.

 

Видно, что эффективность обеззараживания для аппарата с ртутными лампами даже выше, чем для импульсного ксенонового УФ. Надо отметить, что время работы бралось одинаковое (равное 10 минутам) и тестовые образцы помещались на равное расстояние от аппаратов (122 см).

И вот тут я хочу ещё раз обратить внимание на этот очень важный момент – расстояние от прибора до обрабатываемой поверхности. Я не показывал напрямую в расчетах, что расстояние критически важно для эффективного обеззараживания поверхностей и воздуха в помещении. Ведь из расчета УФ-облученности, который я привел выше, видно, что с удалением от лампы интенсивность падает очень значительно. А если падает интенсивность облучения, то должно возрасти время облучения, чтобы это компенсировать. Поэтому, в реальных условиях использования прибора с ультрафиолетовой лампой для дезинфекции помещения надо обращать внимание не столько на объем помещения, сколько на расстояние от прибора до дальнего угла комнаты или самой дальней поверхности. В упомянутой работе Michelle Nerandzic есть ещё один любопытный график, описывающий снижение эффективности обеззараживания импульсным УФ по мере удаления от прибора. Вот он:

Эффективность обеззараживания импульсным ксеноновым ультрафиолетом в зависимости от расстояния в отношении различных микроорганизмов.

 

Видно, что с ростом расстояния эффективность обработки падает очень сильно, а ведь максимальное расстояние в эксперименте было 10 футов (чуть больше 3 м), что само по себе не так уж и много.

Актуальным вопросом является и образование озона. Известно, что ксеноновые импульсные лампы образуют озон во время своей работы, правда производители импульсного УФ-оборудования в своих рекламных материалах умалчивают про это. Но, конечно, про это пишут в различных серьезных исследованиях. И, если внимательно сопоставить различные данные, то вырисовывается следующая ситуация.

Расчет образования озона

В опубликованном исследовании, проведенном компанией «Мелитта», тестовые образцы облучались на расстоянии 2 м в течение 5 и 10 минут, при этом была показана эффективность обеззараживания. Если перевести эти цифры из экспериментальных значений в практические, то получается, что УФ-установка Yanex-2 должна стоять в центре помещения размерами 4×4×3 м (объем 48 м3) и работать минимум 5 минут.

В рекламных материалах указано время, необходимое для обеззараживания с эффективностью 99,9-99,99% в отношении следующих эпидемиологически значимых микроорганизмов при использовании установки «УИКб-01-«Альфа» на расстоянии 2 м (а это значит в помещении объемом 48 м3, как я показал выше):

Clostridium difficile – не менее 7 минут;

Candida albicans – не менее 3 минут;

Аденовирус – не менее 6 минут;

Вирус гепатита С – не менее 5 минут.

В руководстве по эксплуатации установки «УИКб-01-«Альфа» сказано, что «при эксплуатации установки в специальных режимах СР1 и СР2 концентрация озона может превышать ПДК». Далее приводится расшифровка этих режимов: для помещения объемом 50 м³ время обработки соответственно составляет 3 и 5 минут, для 100 м³ – 6 и 10 минут, для 150 м³ – 9 и 15 минут.

В заключении, выданном ФБУН НИИДезинфектологии по результатам совместного исследования с «Мелиттой», указано, что установка «Альфа-06» в ходе своей работы генерирует озон в таком количестве, что концентрация озона в помещении объемом 116 м³ достигает значений ПДК для атмосферного воздуха за 4 минуты, а значений ПДК рабочей зоны – за чуть более чем 7 минут.

А так как согласно данным, размещенным на сайте компании, установки «УИКб-01-«Альфа», «Альфа-06» и Yanex-2 не отличаются по своим техническим характеристикам, то все указанные данные можно использовать в едином сравнении.

Из приведенных данных видно, что для помещения объемом 48-50 м³ необходимо включать установку как минимум на 3 минуты, а то и на 5. Но концентрация озона достигает значений ПДК для рабочей зоны за чуть более 7 минут в объеме 116 м³, а значит в объеме 48-50 м³ она достигнет ПДК за те же 3 минуты. В случае слабого перемешивания воздуха в помещении концентрация озона около импульсной установки может многократно превышать ПДК и представлять большую опасность для людей.

 

По опубликованным данным видно, что для облучателя «Альфа-06» концентрация озона в помещении объемом 116 м³ достигает значений ПДК атмосферного воздуха за 4 минуты, а ПДК рабочей зоны – за 7 минут. Для помещений 100 м³ рекомендуемое время облучения составляет 10 минут при наличии споровой или грибковой микрофлоры. Следовательно, концентрация озона будет превышать ПДК.

После работы в режимах, направленных против реально проблемных микроорганизмов (таких как Clostridium difficile, Candida albicans, аденовирус, вирус гепатита), необходимо как-то избавляться от образовавшегося озона. Ну а классическим и единственным реально применимым способом является проветривание или уличным воздухом (что вообще-то запрещено для медицинских организаций), или воздухом из приточной вентиляции. А это, во-первых, дополнительные и неучтенные временные затраты, и, во-вторых, какой большой смысл вообще обеззараживать воздух в помещении, если он потом будет заменен воздухом неизвестного качества извне? Еще один важный фактор – это время, которое потребуется для удаления озона. Ведь производители импульсного УФ-оборудования одним из достоинств своих облучателей приводят более короткий цикл обработки, но они никогда не упоминают про дополнительное время, необходимое для удаления озона, а оно зачастую существенно превышает время самой обработки. В современных же облучателях на лампах низкого давления применяются безозоновые ртутные и амальгамные УФ-лампы.

Итак, получилось, что импульсный ультрафиолет при его реальном применении для обеззараживания поверхностей помещений и воздуха не отличается от использования классического ультрафиолета от ртутных и амальгамных ламп низкого давления. Ведь если бы импульсный ультрафиолет был таким замечательным методом с низкими эффективными дозами и высокой энергоэффективностью, то тогда бы он использовался повсеместно в УФ-обеззараживании. Но метод, например, вообще не используется для обеззараживания воды, и, хотя применение УФ-обеззараживания воды широко развивается уже последние 40 лет, ни одна известная мне станция водоподготовки или водоочистки не использует такого оборудования.

Крупнейшие международные компании, производящие источники УФ-излучения, такие как Philips, Osram, LightTech, производят импульсные ксеноновые лампы для стробоскопов и другого светового оборудования, а отнюдь не для обеззараживания, так как нет потребности, нет запросов, нет рынка.

Но если нет различия в принципе обеззараживания импульсным и классическим ультрафиолетом, то возможно есть экономическая целесообразность применять импульсные УФ-установки? А здесь наблюдается ещё более интересная ситуация.

Я рассмотрел реально используемые импульсные ксеноновые УФ-установки и установки с ртутными или амальгамными УФ-лампами. Так как выше было показано, что импульсный и классический УФ работают принципиально одинаково, то и для экономического сравнения надо использовать УФ-установки приблизительно равной мощности. Так как современный тренд развития отрасли заключается в росте мощности облучателей для сокращения времени обработки, то я и сравнивал достаточно мощные УФ-облучатели (с потребляемой электрической мощностью около 1 кВт). Таким образом, в сравнение попали «УИКб-01-«Альфа» (мощностью 1,5 кВт), СВЕТОЛИТ-600 (мощностью 2 кВт), ДЕЗАР-ОМЕГА-01-«КРОНТ» (мощностью 0,95 кВт). Анализ тендеров по проведенным закупкам позволил составить вот такую сводную таблицу:

 

Таким образом, получается, что установки, использующие импульсное УФ-обеззараживание, в разы дороже установок, использующих ртутные или амальгамные УФ-лампы. Чем вызвана такая высокая цена импульсных ксеноновых установок понять сложно. Возможно, это высокая стоимость электротехнических комплектующих, с таким низким КПД питающих импульсную УФ-лампу. Но в любом случае, при наличии на рынке более экономичных альтернатив импульсным УФ-установкам возникает вопрос к хозяйственным службам учреждений, закупающих такое оборудование: «Не являются ли они пленниками маркетингового дурмана? Нельзя ли на эти же деньги закупить дополнительного оборудования?»

Интересно отметить, что первооткрыватель двойного механизма обеззараживания импульсного ультрафиолета доктор Alex Wekhof (кстати работавший в то время в компании SteriBeam, производящей оборудование для обеззараживания импульсным УФ, но впоследствии закрывшейся) в 2013 году выпустил работу по экономическому сравнению обеззараживания импульсными ксеноновыми и классическими ртутными УФ-лампами. Основной вывод работы был таков: быстрое обеззараживание ртутными лампами низкого давления в среднем в 10 раз экономичнее, нежели использование импульсного источника.

Суммировав всё вышесказанное, получается, что утверждения вышеназванных производителей импульсного УФ-оборудования об отсутствии аналогов в мире являются, по сути, правдой, но правдой в той мере, что просто в мире никто уже больше не применяет импульсные ксеноновые УФ-установки для обработки помещений.

География «ЛИТ»

ЛИТ Россия

Россия, Москва

ЛИТ Венгрия

Венгрия, Будапешт

ЛИТ Турция

Турция, Стамбул

ЛИТ Китай

Китай, Пекин

Сайт использует файлы cookie. Продолжая пользоваться нашим сайтом, вы соглашаетесь на использование нами ваших файлов.
Я согласен